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Abstract

This paper empirically analyses two types of preferences over the timing of resolution

of uncertainty: preferences between early and late resolution and preferences between one-

shot and gradual resolution of lotteries under risk and ambiguity. In an on-line experiment

with students, we find significant differences between treatments: under risk, a majority

of participants show a strict preference against gradual resolution of uncertainty, for low,

medium and high ex-ante probabilities of receiving the prize of the lottery. Under ambiguity,

most participants show a preference for gradual resolution of uncertainty for lotteries with

a low-likelihood of winning, and an aversion towards it for medium and high likelihoods.

Additionally, in both treatments we find subjects show strict preferences more frequently

in the one-shot vs. gradual resolution dimension than in the early vs. late resolution

dimension. Results from the experiment contribute to the literature about the empirical

validity of ambiguity models, as different models prescribe different preferences over the

timing of the resolution of uncertainty.
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1 Introduction

Under expected utility theory, receiving interim information about the outcome of a decision

after it has been made (namely, non-instrumental information) should always be weakly preferred

to not receiving it, as decision-makers are assumed to account for any further information they

may receive in the future when making the decision (in other words, they satisfy the reduction of

compound lotteries axiom). Additionally, standard theory also assumes that the time in which

they learn about the outcome of a decision should not matter when making the decision either

(i.e. they satisfy the time neutrality axiom, as defined by Segal, 1990).

In this work, we study the empirical validity of these axioms in an ambiguous setting, that

is, in a setting in which the exact probability of states of the world is unknown. We do this

by designing and implementing an experiment in which we compare preferences related to the

axioms (and their deviations) between subjects assigned to making decisions in an environment

in which probabilities are known, and one in which they are not. Additionally, we study the the-

oretical implications of deviations from the axioms on the empirical validity of several ambiguity

models.

Deviations from the above mentioned axioms can have significant economic implications.

For instance, subjects in a laboratory experiment have been shown to be more risk averse when

they receive more frequent feedback about their performance, therefore, leading them to reach

suboptimal levels of stock investments (Gneezy and Potters, 1997), even after controlling for

the possibility of dynamic investment (Bellemare, 2005). Kocher et al. (2014) also showed, in

an experimental setting, that feelings of hope and anticipation incentivised participants to take

part in the national lottery in the Netherlands, and to delay as much as possible the resolution

of that lottery.

Beyond this laboratory evidence, learning about preferences over non-instrumental informa-

tion can also help to isolate the non-pecuniary cost of this information from the total effect of

instrumental information. One frequent example of such information mechanisms are genetic

tests of diseases, which are becoming ever more commonplace. These tests provide information

about genetic mutations that have been found to be correlated with an increased chance of de-

veloping certain diseases (Evans et al., 2001). Some of these diseases (such as multiple endocrine

neoplasia type 2) are almost always preventable if the associated mutations are detected. The
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probability of suffering other diseases can also be expected to increase given certain mutations,

but no effective treatment exists to prevent their development (for instance, Alzheimer’s disease),

and other diseases lie somewhere in between (e.g. breast and ovarian cancer). This last exam-

ple is paradigmatic of the interrelation between the instrumental and non-instrumental value of

information1. The results of such a test are partly instrumental as they can incentivise surgical

interventions to reduce the risk of developing this disease; however, this information can also

be non-instrumental as successful prevention of the disease is not guaranteed, and as a result,

learning about the increased risk can create negative anticipatory feelings due to the increased

risk of developing the disease. In these cases understanding preferences over non-instrumental

information is essential to perform a welfare analysis of the value of these tests to individuals.

There is an increasing experimental literature on preferences over non-instrumental infor-

mation (Ahlbrecht and Weber, 1997; Lovallo and Kahneman, 2000; Budescu and Fischer, 2001;

Zimmermann, 2015; Masatlioglu et al., 2017; Nielsen, 2020). All of these papers have focused

on cases in which the ex-ante and interim probabilities of outcomes are perfectly known or risky.

In real life, however, learning the exact probabilities of outcomes is in many cases impossible.

Following on the example of genetic tests above, there exist competing studies that report dif-

ferent probabilities of developing a disease given a mutation (Chen and Parmigiani, 2007), and

idiosyncratic variables, such as lifestyle and additional mutations, can increase the uncertainty

about the real probability of suffering the disease. The same can be said about other phenom-

ena that have deep and widespread economic and social effects, such as the recent Covid-19

pandemic or climate change. The limited, evolving and often conflicting understanding of these

events generates ambiguity about the future state.

In a recent policy paper, Berger et al. (2020) discuss the three sources of uncertainty that an

imperfect understanding of a crisis like the pandemic are related to: uncertainty within models,

across models and about models. The first type of uncertainty is the one that is considered in

risky problems. For instance, quantitative models make assumptions about random shocks with

known distributions that lead to estimates of the probability of an event occurring. Uncertainty

across models (e.g. conflicting evidence) and about models (for instance, missing variables,

incorrect specification of models) are instead related to unmeasurable uncertainty or ambiguity.
1Lerman et al. (1996) offered a free test of genetic mutations to a sample of men and women with a family

history of genetically determined breast-ovarian cancer. Only 43% of the participants in the study asked to learn
the results of the test.
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Receiving more information from new studies may increase this unmeasurable uncertainty2.

Given the ubiquity of non-neutral attitudes towards ambiguity (Trautmann and de Kuilen,

2015), it is important to understand how the availability of uncertain or ambiguous information

affects decision-making in these situations, and other decision-making processes. In this chap-

ter, we perform an experimental analysis in which we study the two types of preferences over

non-instrumental information mentioned above: preferences over early or late resolution of un-

certainty, and preferences over one-shot or gradual resolution of uncertainty. We construct two

between-subject treatments: risk and ambiguity. In the risk treatment, participants are shown

lotteries in which ex-ante and interim probabilities (when further information is provided) of

winning the prize are known; in the ambiguity treatment, on the other hand, the exact ex-ante

and interim probabilities of winning the lottery are unknown. Within each treatment subjects

have to make 20 pairwise choices. These pairwise choices are composed of two lotteries that may

differ in two aspects: they can be lotteries that are resolved in one stage (one-shot lotteries), or

lotteries resolved over two periods (gradually resolved lotteries); if they are one-shot lotteries,

they can also be resolved either early or late. Comparisons along the former aspect allow to

study if subjects have preferences about learning partial non-instrumental information before

the lottery is resolved, or instead show aversion towards learning this partial information. Com-

parisons along the latter aspect can show preferences over early or late resolution of uncertainty.

The lotteries we compare, on the other hand, both have the same ex-ante probability of winning

so they only differ in how the information is learnt. Gradually resolved lotteries share the same

variance as well, so none are more informative than others.

We consider two additional within-subject treatments: across pairwise choices we vary the

ex-ante likelihood or probability of winning the lottery. We do this to test whether different like-

lihoods of the good outcome occurring affect preferences, especially in the ambiguity treatment,

as it has already been established that the likelihood of an event occurring can lead to changing

attitudes towards ambiguity (Dimmock et al., 2013, 2016, Bouchouicha et al., 2017). In the risk

treatment we also consider positively and negatively skewed lotteries. Masatlioglu et al., 2017

show that i) more participants have a preference to resolve the lottery early than late as the

probability of winning the prize goes up, ii) preference for positively skewed lotteries over nega-
2For instance, in a meta-analysis of 172 observational studies Chu et al. (2020) find that the reduction in the

risk of being infected by the SARS-CoV-2 virus by using a mask ranges from 6% to 80%, depending on the study.
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tively skewed lotteries is greater for higher probability of the desired outcome. We include this

additional within-subject treatment to test preferences between one-shot and gradually resolved

(positively and negatively skewed) lotteries at different probabilities of winning the lottery.

Finally, following the theoretical work linking ambiguity models and preferences over the

timing of resolution of uncertainty (Strzalecki, 2013, Li, 2020), we also reach conclusions about

the empirical validity of several ambiguity models (maxmin model, multiplier model, Choquet

utility model).

Our results show that there exist significant difference in preferences over gradual resolution

of uncertainty between risk and ambiguity treatments. Under risk, we find no significant effect

of the ex-ante likelihood of the lottery affecting these preferences. Under ambiguity, however,

there is a shift from a majority of participants liking gradual resolution at low likelihoods of

winning the lottery, to most of them becoming averse to it for higher levels of likelihood. This

attitude is orthogonal to attitudes towards ambiguity, and as a result, none of the models we

study can explain this behaviour. It can, however, help develop new ambiguity models that can

better explain this empirical evidence.

Related literature

Our work is most closely related to three strands of the literature: empirical papers on

preferences over the timing of resolution under risk, experimental analysis of ambiguity models,

and a recent strand of the literature on ambiguous signals.

Ahlbrecht and Weber (1997), and Lovallo and Kahneman (2000) first studied how anticipa-

tion about the outcome of a hypothetical lottery, and the implications of its structure (specifically

its skewness and whether it reports gains or losses) affect preferences over one-shot or gradual

resolution of uncertainty, between positively and negatively skewed lotteries and with different

ex-ante probabilities of winning. In incentivised experiments, Abdellaoui et al. (2010) showed

that subjects become more risk loving as the outcome of a lottery is delayed and Kocher et

al. (2014) that a large minority of participants in an experiment had a strict preference to

receive a ticket to a real state-run lottery whose draw is performed later rather an early. With

respect to learning partial information, Eliaz and Schotter (2010) find that in risky choices,

participants in an experiment choose to pay for non-instrumental information. They relate this

to the ‘confidence effect’, that is, participants want to become more confident that they made
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the right decision by acquiring this additional information. Zimmermann (2015), on the other

hand, observed that approximately half of the participants in his experiment preferred to re-

ceive information in one period, whilst the other half had a preference for gradual resolution

of uncertainty throughout a whole week. Falk and Zimmermann (2016) considered a decision

in the domain of losses and concluded that if a distracting activity is available before learning

the outcome, subjects show a preference to delay learning about the outcome. Masatlioglu et

al. (2017) find that subjects usually have a preference for positively skewed risky lotteries, or

lotteries that are more informative in the good state, than negatively skewed lotteries, and this

preference becomes stronger the higher is the ex-ante probability of winning the lottery. Finally,

most recently, Nielsen (2020) studied differences in preferences in the timing of the resolution

of uncertainty if the outcome of the lottery has already been resolved and if it is still has to be

resolved. She found, using an interesting experimental approach where no constraints were set

on the choice of lotteries, that in the former case there is a preference for early resolution of

uncertainty and in the latter case there is a preference for later resolution of uncertainty.

These empirical papers stem from theoretical work pioneered by Kreps and Porteus (1978).

They first considered the issue of non-indifference towards the timing of information axiomati-

cally. Their work was further refined by Grant et al. (1998, 2000). Dillenberger (2010) linked a

preference for one-shot resolution of uncertainty to the certainty effect, as shown by the Allais

paradox (1953). Palacios-Huerta (1999) provided a first behavioural foundation to the aversion

to partial information by linking it to disappointment aversion, as described by Gul (1991).

Koszegi and Rabin (2009) similarly explain that partial information will be avoided by assuming

loss aversion in a consumption model with an endogenous reference point. Hoy et al. (2015)

show that ambiguity aversion (characterised as a ‘dilation’ of priors3) could explain the low

take-up rate of genetic tests. Ely et al. (2015) go against the previous papers and propose that

suspense (modelled as shifts in the prior about the outcome of an event) can actually lead to a

preference for partial information.

Our work also relates to the growing literature on empirical tests of ambiguity models. Halevy

(2007) analysed the validity of subjective expected utility, maxmin and the smooth model, by

analysing preferences over compound lotteries and ambiguous lotteries. Conte and Hey (2013)
3Dilation of priors is defined as the extension of the set of possible priors after receiving a signal (Seidenfeld,

Wasserman, 1993).
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estimated parametric versions of the subjective expected utility model, the smooth model, the

rank dependent expected utility and the α-maxmin model. Baillon et al. (2015) concluded that

prospect theory best explains ambiguity attitudes, in an experiment with positive and negative

ambiguous lotteries4. As far we are aware, ours is the first paper to check the empirical validity

of ambiguity models by studying preferences over the timing of the resolution of ambiguous

lotteries.

Lastly, there exists a recent branch of the ambiguity literature that studies attitudes towards

ambiguous information. Epstein and Halevy (2020) experimentally test the martingale property

of Bayesian updating in an environment in which the likelihood of the outcome of a lottery

is ambiguous and subjects also have ambiguity about the extent of the informativeness of the

signal, by eliciting conditional and unconditional probability equivalents of the lotteries. Liang

(2021) considers an experiment where the prior about the outcome of a lottery is risky and the

informativeness (whether the signal is true or misleading) is uncertain, or vice versa. It also

elicits certainty equivalents of conditional and unconditional lotteries. Kellner et al. (2020) look

at how ambiguous information leads to changes in beliefs about the state of the world5. The

approach of these three papers is very different to ours, as they do not study the aversion to

gradual resolution of uncertainty. The first two papers elicit conditional certainty or probability

equivalents, thus, already doing away with the aversive nature that may be related to receiving

the partial information, and in which we are most interested. In Kellner et al. (2020) subjects

always receive partial information, so the authors do not study the possibility of aversion to-

wards gradual resolution of uncertainty either. Shishkin and Ortoleva (2021) is the paper closest

to ours in its motivation. They study the value of information in an experiment in which they

allow for "dilation" of priors, which is a common feature of models like maxmin and the smooth

models, under certain conditions. They consider risky and ambiguous priors over the outcome

of the lottery and ambiguous information about the trustworthiness of the signal. Their experi-

ment differs from ours in three key aspects: i) we compare risky lotteries with risky information

to ambiguous lotteries with ambiguous information; ii) in the ambiguity treatment of our ex-

periment, we consider the case in which the prior is ambiguous and the partial information (or

signal) that is received enforces a dilation of the priors. This allows to pin down the predictions
4Other papers that evaluate ambiguity models are Andersen et al. (2009), Hayashi and Wada (2010), Abdel-

laoui et al. (2011), Ahn et al. (2014), Hey et al. (2014), Chew et al. (2017), Cubitt et al. (2020).
5De Filippis et al. (2021) also study belief updating under ambiguity in a social environment.
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of standard models like maxmin under ambiguous priors, and study their empirical validity. iii)

We also analyse different likelihood levels of priors to check for variations in preferences over

partial information under ambiguity.

In the next section, we discuss our experimental design. In section 3 we show the connection

between some theoretical models of ambiguity aversion and the decisions that participants have

to make in the experiment. Section 4 shows the results of the experiment, which are discussed

in section 5, and section 6 concludes.

2 Design of the experiment and implementation

The experiment consists of two between-subject treatments (risk and ambiguity).

In each of the treatments subjects are asked to make 20 pairwise choices between lotteries.

These lotteries can be of two types: simple lotteries and compound lotteries. Each type of lottery

is used to analyse preferences over two classes of choices: simple lotteries represent choices in

which all uncertainty is resolved in one period (one-shot resolution); compound lotteries represent

choices in which uncertainty is resolved over two periods (gradual resolution).

2.1 Composition of lotteries

In the risk treatment, simple lotteries have two elements: an urn that contains one hundred

balls, numbered from 1 to 100, and a subset of these balls, which determine the winning numbers

of the lottery.

The first stage of the compound lottery has the same urn as the simple lottery, with balls

numbered from 1 to 100. In the first period one ball is drawn from this urn. The content of

the urn in the second period depends on the value of this drawn ball. If the value of the ball

drawn in the first period is lower or equal to a pre-determined value that we call threshold value,

then the second stage urn is composed of all balls from the top urn with value equal or lower to

the threshold value, including the drawn ball. If the ball has a value larger than the threshold

value, then the second stage urn is composed of all balls with value greater than it. The ball

drawn from the second urn determines the prize of the lottery. If the drawn ball coincides with

one of the winning numbers, then, the participant wins the lottery prize, otherwise she wins

nothing. This is an intuitive and novel way of generating compound lotteries that can easily
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be understood by subjects in the experiment. Additionally, varying the threshold value and

the set of winning numbers, lotteries with same variances but changing skewness can be easily

generated.

In the ambiguity treatment, simple lotteries are also formed by an urn, but this urn is

composed of two hundred balls. One hundred balls have a value between 1 and 100, whereas the

value of the other hundred balls is unknown to both the experimenter and the participant. The

value of these 100 balls is achieved using Stecher et al. (2011)’s mechanism at the beginning of

the experiment6, and neither the experimenter nor the participant learns about the content of

the urn until the end of the experiment7. This algorithm is designed to generate distributions

with no finite moments. This approach, in conjuction with the fact that the experimenter

cannot observe the content of the urn until the end of experiment, prevents ambiguity being

understood by participants as the experimenter being more knowledgeable about the distribution

than themselves (Fox, Tversky, 1995), as past observations of the distribution are not informative

about future ones.

Compound ambiguous lotteries are generated similarly to compound risky lotteries. We first

determine the threshold value, which varies from lottery to lottery. The value of the ball drawn

in the first period determines the content of the second urn. If the value of the ball drawn is

smaller or equal to the threshold value, then the second urn is composed of all balls with value

smaller or equal to the threshold value, including the ball drawn. If the value drawn is higher

than the threshold value, then the second urn is composed of all balls with value larger than the

threshold value.

2.2 Choice of lotteries

In both treatments we consider 4 different categories of compound and simple lotteries: 3

lotteries vary in probability or likelihood. Probabilities of winning the prize are either 10%,

50% and 90%. Risky compound lotteries of these categories all have the same variance, that is,

the dispersion from the ex-ante probability to the interim probability from receiving the partial

information is always the same. This allows us to compare choices between different categories

while keeping the informativeness of lotteries constant. One drawback from maintaining infor-
6In our experiment there is no possibility of hedging between choices, but we still follow the prescribed incentive

compatible mechanism proposed by Baillon et al. (2014).
7Participants are informed about this fact at the beginning of the experiment.
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mativeness constant for all three probabilites is that changes from the ex-ante probabilities to

the interim probabilities are relatively small. This is due to the fact that changes in interim

probabilities for very low (10%) and very high (90%) ex-ante probabilities are very constrained

from below and above respectively, which limits the set of lotteries that preserve the ex-ante

probability and variance. As a way to check whether higher informativeness has a differential

effect in preferences, we include an additional set of lotteries, with 50% ex-ante probability,

which allows for higher variance in the interim probabilities from the ex-ante probability.

Additionally, in order to study if differences in skewness also affect decision-making, we

include one positively and one negatively skewed lottery for each of the four categories.

As mentioned above, participants make 20 pairwise choices between lotteries. These lotteries

are completely characterised by the set of winning numbers (for all lotteries) and the threshold

value (if the lottery is a compound lottery). The amount of winning numbers pins down the ex-

ante probability/likelihood of winning. The number of those winning numbers and the threshold

together determine the interim probability of winning, after one of the possible information sets

(ball is below or above threshold) has been realised. Different combinations of these two elements

lead to positively skewed or negatively skewed lotteries in the risk treatment.

Table 1 shows these two variables, and the characteristic of each lottery.

Lottery # Set of winning numbers Threshold value Description:
1 1-5; 96-100 - Simple lottery (10%)
2 1-24; 46-71 - Simple lottery (50%, low variance)
3 16-40; 61-85 - Simple lottery (50%, high variance)
4 8-97 - Simple lottery (90%)
5 1-5; 96-100 37 Compound lottery (10 %), positively skewed
6 1-7; 98-100 56 Compound lottery (10 %), negatively skewed
7 1-24; 46-71 45 Compound lottery (50 %), low variance positively skewed
8 25-45; 72-100 45 Compound lottery (50 %), low variance negatively skewed
9 1-15; 41-60; 86-100 20 Compound lottery (50 %), high variance positively skewed
10 16-40; 61-85 80 Compound lottery (50 %), high variance negatively skewed
11 8-97 56 Compound lottery (90 %), positively skewed
12 6-95 37 Compound lottery (90 %), negatively skewed

Table 1: Lotteries in the Experiment

The 20 pairwise choices elicit preferences over early, gradual and late resolution of uncer-

tainty, for different ex-ante probabilities/likelihoods and skewness by combining the 12 lotteries

described in table 1. As can be seen in table 2, for each probability/likelihood level there are 5

pairwise choices: the first choice is between early and late resolution of uncertainty, the second

and third ones between early resolution and gradual resolution with a positive and negative skew
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Pairwise choice # Choice X Choice Y
1 Early resolution of lottery 1 Late resolution of lottery 1
2 Early resolution of lottery 1 Lottery 5
3 Early resolution of lottery 1 Lottery 6
4 Lottery 5 Late resolution of lottery 1
5 Lottery 6 Late resolution of lottery 1
6 Early resolution of lottery 2 Late resolution of lottery 2
7 Early resolution of lottery 2 Lottery 7
8 Early resolution of lottery 2 Lottery 8
9 Lottery 7 Late resolution of lottery 2
10 Lottery 8 Late resolution of lottery 2
11 Early resolution of lottery 3 Late resolution of lottery 3
12 Early resolution of lottery 3 Lottery 9
13 Early resolution of lottery 3 Lottery 10
14 Lottery 9 Late resolution of lottery 3
15 Lottery 10 Late resolution of lottery 3
16 Early resolution of lottery 4 Late resolution of lottery 4
17 Early resolution of lottery 4 Lottery 11
18 Early resolution of lottery 4 Lottery 12
19 Lottery 11 Late resolution of lottery 4
20 Lottery 12 Late resolution of lottery 4

Table 2: Choices in the Experiment

respectively, and the fourth and fifth ones between late resolution and gradual resolution with

a positive and negative skew respectively.

Due to the admittedly complicated nature of computing interim probabilities of winning these

lotteries, we compute these probabilities for the participants and show them these probabilities

below the lotteries (see figure 4 and Appendix for examples). We also show them the probability

of reaching each information set. In the case of the ambiguity treatment we show the lowest and

highest probability of the ex-ante probability and the interim probabilities (for cases in which

the ball drawn is lower than the threshold and when it is higher) of winning the lottery, as well

as the lowest and highest probability of any given information set occurring.

Additionally, all gradually-resolved lotteries lead to the same updating of probabilities under

multiple prior models (maxmin, maxmax, α-maxmin) for the two most common Bayesian up-

dating rules in the literature (Gilboa and Marinacci, 2016): maximum likelihood updating8 and
8Formally, the updated probability, for realised event A under maximum likelihood updating is : CML

A ={
P (·|A)|P ∈ argmax

Q∈C
Q(A)

}
, where C is a set of priors over the state of the world and Q is a subset thereof, that

represents the marginal prior probabilities of event A.

11



full-Bayesian updating9. The first rule establishes that decision-makers only update the priors

that maximise the likelihood of the interim event happening. In our experiment this event is

whether the first ball drawn has a number above or below the threshold. The second rule updates

all priors considered. Under multiple prior models, decision-makers either consider the prior that

minimises their utility (in the maxmin model), maximises it (in the maxmax model), or a convex

combination of these two (in the α-maxmin). The priors that minimise (or maximise) utility in

this case are the priors that assume the lowest (highest) number of winning numbers among the

100 balls with unknown number. Out of all these priors the maximum likelihood rule establishes

that only those priors with the highest number of balls that are below (above) the threshold

will be considered, if participants are told that the first ball drawn is indeed below (above) the

threshold. Out of all these priors, the prior that will minimise (maximise) the interim proba-

bility is the one that has the highest number of balls below or above the threshold (depending

on the event), but at the same time considers all these balls as loser (winner) numbers. The

posterior generated this way will coincide with the full-Bayesian updating posterior, as in this

case again, the lowest (highest) interim probability of winning is the one in which the highest

possible number of balls are below or above the urn, and at the same time they are all losing

(winning) numbers. Therefore, in this experiment choices cannot be affected by the updating

rule, if participants consider multiple priors and we assume that the satisfy one of the most

common Bayesian updating rules.

2.3 Timing of experiment

Table 2 shows that the same lottery can be chosen to be resolved early or late. The aim of

this pairwise choice is to analyse how the timing of the resolution of uncertainty affects decision-

making. In order to effectively test this, the timing of when decisions are made and resolved is

explained in detail to participants in the instructions of the experiment. Participants are also

told that lotteries resolved early will be played right after all 20 pairwise choices have been shown

to participants and that lotteries resolved late will be resolved 30 minutes after all choices have

been made10. The first part of the gradually resolved lotteries is resolved at the same time as
9Formally, the updated probability under full-Bayesian updating for realised event A, and given a prior P

about the state of the world in the set of priors C is : PFB
A = {P (·|A)|P ∈ C}.

10We follow standard waiting time of 30 minutes to determine a sufficient time distance between early and late
resolution, following the work by Masatlioglu (2017) and Nielsen (2020).
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the lotteries resolved early, and the second part at the same time as the lotteries resolved late.

We also tell participants that even if they choose to resolve a lottery early, and that lottery is

played for money, they will stil have to wait 30 minutes for the experiment to conclude. This

rules out the time cost of taking part in the experiment causing any strict preferences for early

resolution over either gradual or late resolution. As part of the instructions, participants are

also told that, during the 30 minutes between the times in which lotteries can be resolved, they

will either be constantly reminded by the prize they won (if an early-resolved lottery is played)

or lottery that will be played in 30 minutes (if a gradually resolved or late-resolved lottery is

played). They are reminded about this through a small box on the lower right-hand side of their

screen11.

After the instructions, they have to answer a set of questions to show they have understood

how lotteries are formed and how they are resolved. Then, participants are shown the 20 pairwise

choices in four different orders (see Appendix)12.

One of the pairwise choices is then randomly selected and one of the three decisions from

the selected pairwise choice is also randomly chosen to be played for money by the computer.

This method has been determined to be incentive-compatible under the standard assumption of

monotonic utility over monetary prizes (Azrieli et al., 2018).

Depending on the choice made by the participants in the randomly selected decision the

lottery will be either played by the computer and the outcome shown to participants (if chosen

lottery is resolved early), partly resolved and the second part of the lottery shown to participants

(if chosen lottery is resolved gradually), or no lottery will be resolved (if chosen lottery is resolved

late). In the case of gradually resolved lotteries in the ambiguity treatment, they are not told

about the exact value of the drawn value, to maintain participants agnostic about the content

of the urn, and prevent updating of beliefs about the numbers on the unknown balls. During

the following 30 minutes participants have to complete the slider (real effort) task (Gill and

Prowse, 2012). This task is part of a separate project, which aims to look at how differences

in endowment, increased or decreased chance of having high future earnings as compared to an

ex-ante exogenous probability, and the level of uncertainty about the environment motivates or
11In an on-line experiment, the possibility of being distracted by external stimuli is increased as we cannot

control the environment to the same extent as in a lab experiment. We, therefore, choose to make this information
more salient to participants at all times, so that the feeling of unresolved uncertainty is felt more strongly throught
the experiment.

12This is done to control for possible order effects.
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discourages effort. There are 10 rounds (with two practice rounds) of 90 seconds in this section

of the experiment. If participants complete this before the 30 minutes are over, they are taken to

a waiting screen that shows for how much longer they will have to wait before they can complete

the experiment and the same information they have had during this interval.

After 30 minutes have passed, participants whose selected lotteries had still not been played

learn the outcome of the lottery. We then perform some control tasks: risk aversion elicitation

is done using the BRET method (Crosetto and Filippin, 2013). We measure ambiguity aversion

using the standard two-urn choice problem of Ellsberg. However, as we want to elicit ambiguity

aversion for different likelihoods of winning the prize, we use a risky urn that contains 10 balls

numbered from 1 to 10, and an ambiguous urn that also contains 10 balls but where any ball can

take any value between 1 and 10. The winning numbers in each of the three decision problems

are: 1, 1 to 5 and 1 to 9. This is a standard method used to elicit ambiguity aversion with

changing likelihoods of winning (Trautmann, de Kuilen, 2015). We again follow Baillon et al.

(2014) and generate the ambiguous urn, which is the same for all three decision problems at the

beginning of the experiment. However, due to the risk of suspicion from participants (Hey et

al., 2010; Abdellaoui et al., 2015) and possibility of hedging of ambiguity, we chose to pay for

all choices in this case. Lastly, we perform a common ratio effect test. This is done to study if a

(negative) certainty effect is correlated with preferences over gradual and one-shot resolution of

uncertainty, as prescribed by Dillenberger (2010). We also evaluate psychological characteristics

of participants with two measures: Big-five personality traits (Rammstedt and John, 2007) and

positive and negative affect (Watson et al., 1988).

2.4 Elicitation of strict preferences

As we discussed in section 1, standard expected utility theory establishes that the timing and

structure of non-instrumental information should not affect preferences. Therefore, indifference

between the choices participants face in the experiment would be compatible with standard

models, as neither the independence axiom, nor the reduction of compound lotteries would

be violated. Establishing a method to separate strict preferences from preferences that are

compatible with indifference is, as a result, necessary to draw conclusions about the validity of the

standard and alternative models. We follow the strict preference elicitation method developed

by Epstein and Halevy (2019). For each of the 20 pairwise choices, we ask participants to make
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Figure 1: Example of Pairwise Choices and Decisions

three decisions, as can be seen in figure 1. In the first one, the prize of the two lotteries is

the same (£15), in the second one choice X has a higher prize (£15.5) than Y (£15), and the

opposite happens in the third decision. Assuming monotonicity of preferences, if a participant

has a strict preference for one of the two lotteries, they would choose that lottery in all three

decision problems; if, instead, they only have a weak preference for one of the lotteries, then they

would choose that lottery in the first decision problem, and the lottery that gives the highest

prize in the second and third lotteries13.

This preference elicitation method has several advantages: firstly, as we assume that par-

ticipants do not necessarily satisfy the axioms of (subjective) expected utility (e.g. ambiguity

neutrality, reduction of compound lotteries), it prevents issues with eliciting monetary certainty

equivalent values of lotteries (Freeman et al. 2019); secondly, due to the high number of deci-

sion, and the increased cognitive load this leads to, having only three decisions for each pairwise

choice simplifies the experiment compared to other methods of elicitation; thirdly, it simplifies
13Participants may still have a strict preference over one of the lotteries in this case, if the difference certainty

equivalents of the lotteries is smaller than £0.5. Therefore, strict preferences using this method can be interpreted
as a lower bound.
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the observation of non-monotonic choices, without imposing them. This is particularly impor-

tant in an on-line experiment in which participant’s attention is one of the main issues compared

to lab experiments.

2.5 Implementation

The experiment was run on-line, using oTree (Chen et al., 2016; Holzmeister and Armin

Pfurtscheller, 2016) to program it. 121 students from ELFE (Experimental Laboratory of Fi-

nance and Economics) at UCL participated in the experiment, between July and August 2020,

and were randomly assigned to one of the two between-subject treatments: 61 participants were

assigned to the ambiguity treatment and 60 participants were assigned to the risk treatment14.

The experimental design and main hypotheses were pre-registered at AsPredicted15. The average

payment was £25.5 (including £5 participation fee). This is in line with laboratory experiments

performed at the ELFE lab.

3 Theoretical framework

We now discuss the theoretical predictions of different models of decision-making under risk

and ambiguity about the choices over the lotteries we show to participants in the experiment.

We characterise each lottery f as a Savage act f: Ω → X, a mapping from the set of states

of the world Ω to the set of consequences X. In our experiment we can decompose the set of

states of the world into two subsets, Ω = B × S, where b ∈ {1, ..., 100}, that is, the realised

state within the subset B (b ∈ B) is the ball drawn from the urn that determines the outcome

and S is the set of possible compositions of the ambiguous urn, that is, the set of probability

distribution over the 100 unknown balls. x ∈ {0, 15, 15.5} (x ∈ X) is the associated prize to the

lottery which varies across decision problems, due to the strict preference elicitation method.

We define subsets of the set of the ball that determines the prize B as events or information

structures: E ⊆ B. In simple or one-shot lotteries the set of events is unique, equivalent to the

whole set B, and it is not partitioned further before the realisation of the state of the world;

this is so because in these lotteries no further information about the value of the ball is learnt
14The UCL Research Ethics Committee approved the experiment with IRB: 12439/ 001.
15AsPredicted is a deposit for experimental designs funded by the Wharton School of the University of Penn-

sylvania and managed by the Wharton Credibility Lab.
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before its realisation. We denote this partition as π∅ = {E0} = {B}. In compound or gradually

resolved lotteries instead the set of states is partitioned in two events. We denote this partition

as πI = {E1, E2}, where E1 = {1, ..., th}, E2 = {th+ 1, ..., 100} (where th is the threshold value

as shown in table 2), that is, in compound lotteries participants learn if the true state of the

world is below or equal to the threshold value, or above it, before they learn b.

3.1 Decision-making under risk

In the risk treatment, we determine the ex-ante probability of winning the lottery in every

pairwise choice problem to be the same, that is, for every bi ∈ B, we enforce that Pr(bi)=pi

and Pr(Ej)=qj and Pr(bi|Ej)=ri,j , such that pi=
∑2

j=1 qjri,j . In other words, if subjects satisfy

the axiom of reduction of compound lotteries (which implies time neutrality as well (Segal,

1990), then participants should be indifferent between one-shot lotteries and gradually resolved

lotteries, and between one-shot lotteries resolved early and late. We can also assume away

the subset of states of the world that characterise the distribution of unknown balls as this is

completely identified in this treatment (i.e., Ω = B).

However, if the reduction of compound lotteries did not hold 16 we could observe that fπI �

fπ∅ or fπ∅ � fπI (where fπI represents lotteries that are gradually resolved and fπ∅ lotteries

that are resolved in one-shot).

3.2 Decision-making under ambiguity

In the experiment, we mainly use risky lotteries as a benchmark with which to compare

decision-making under ambiguity. We elicit ambiguity generating an urn with 100 balls with

unknown values, and 100 balls with a known value . Therefore, Pr(b)∈ { 1

200
, ...,

101

200
}, ∀b ∈ B.

The exact ex-ante probability depends on the compositions of the urn, which is an element

s ∈ S. DM have a set of beliefs about the composition of the urn. These beliefs have been

modelled using different models in the literature. Within the framework of our experiment we

can reach conclusions about the empirical validity of some of these models. In order to study

the implications of each of these models, we consider a monotonic u : X → R utility function,

and simplify it to u(15)=1 and u(0)=0.
16Abdellaoui et al. (2015) show a compound-risk premium, which is increasing in the probability of winning

lottery. Harrison et al. (2015) find evidence against reduction of compound lotteries.
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Maxmin utility model (MEU)

This model, first axiomised by Gilboa and Schmeidler (1989), is the most popular model in

the literature, mainly due to its simplicity in rationalising the Ellsberg paradox (1961), which

is the cornerstone of the literature on ambiguity aversion. It considers a set of priors over the

ambiguous state of the world, in this case the composition of the urn, C ⊆ ∆(S).

The model sets the utility from act fπ∅ (where a lottery has prize 15) as:

V (fπ∅) = min
p∈C

∑
w∈W

p(w) = min
p∈C

Pr(win)

where W ⊆ B is the set of winning numbers in lottery f.

From our set of lotteries, we can reach the following conclusion.

Proposition 1 If we assume MEU, all gradually lotteries in table 1 satisfy these two conditions:

i) V (fπ∅) ≥ V (fE1)

ii) V (fπ∅) ≥ V (fE2)

where V (fE1) is the value of the lottery after E1 is realised, and similarly for V (fE2), with

at least one inequality strict for all f in table 1.

As Pr(E1) > 0 and Pr(E2) > 0 for all P ∈ C, from proposition 1 we conclude that

participants have a strict aversion towards all gradually resolved lotteries.

Proposition 1 is implied by Proposition 3 in Li (2020), which states that if a DM has MEU

preferences, then she has aversion towards receiving partial information, and this aversion is

strict if the set of priors C is not π1-rectangular, that is, if it is not rectangular with respect

to the partition imposed by gradually resolved lotteries. Rectangularity of priors (Epstein and

Schneider, 2003) implies that all combinations of conditional and marginal probabilities con-

tained in the set of ex-ante priors are also included in the set of priors. In our case this does not

hold. As an illustration, imagine a combination of conditional lotteries where the probability of

obtaining the ball 1 is 1/(100+th) after event E1 (that is, all balls with unknown value have a

value below the threshold but different from 1); suppose also a marginal distribution where the

probability of state E1 is th/200 (that is all balls with unknown value have a value greater than

the threshold). It is easy to check that a combination of these two leads to a prior that is lower

than the lowest ex-ante probability of obtaining 1. Therefore, this set is not rectangular17.
17Formally, a set of priors C is rectangular if C = {p ∈ ∆(S) : p =

∑
E

pE(·|E)q(E) ∀pE(·), q(E) ∈ C} where

pE(·) represents the conditional probability after event E and q represents the marginal probability of state E.
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Therefore, in any event that results from the partition π1 of the gradually resolved lottery, if

participants satisfy MEU, the probability of winning the lottery will be lower than the ex-ante

probability, and subjects will therefore have a strict preference for one-shot lotteries.

Choquet expected utility

Choquet expected utility (Schmeidler, 1989) is a representation of preferences in which ex-

pected utility is computed using a capacity instead of probabilities. That is, a utility function

V : f → R is Choquet expected utility if:

V (f) =
∑
ω∈Ω

u(f(ω))v(ω)

where v is a capacity; that is, it is a mapping from the sigma-algebra Σ of states Ω to the interval

between 0 and 1 (v : Σ→ [0, 1]) that satisfies the following conditions:

i) v(∅) = 0 and v(Ω) = 1

ii) E′ ⊆ E implies that v(E′) ≤ v(E)

Choquet expected utilities can represent ambiguity-averse or ambiguity-seeking attitudes

depending on the shape of the capacity v. If v is convex (that is, if v(E ∪ F ) + v(E ∩ F ) ≥

v(E) + v(F ), for any two events E and F in Σ) then they represent ambiguity-averse attitudes

and ambiguity-seeking if v is concave (that is, if v(E ∪ F ) + v(E ∩ F ) ≤ v(E) + v(F )).

Choquet expected utilities are a special case of MEU when v is convex (Gilboa and Marinacci

(2016)). Therefore, the same results apply as for MEU when the DM is ambiguity averse, i.e.,

she has a strict preference for the one-shot lotteries over gradually resolved lotteries. Similarly

if v is concave, then Choquet expected utility represents an ambiguity-seeking decision-maker’s

preferences and as a result gradually resolved lotteries will be preferred to one-shot lotteries.

Multiplier preferences

Multiplier preferences (Hansen and Sargent, 2001) are most commonly used in macroeco-

nomic models. They are characterised by the following utility function:

U(f)=min
p∈C

[ ∑
w∈W

p(w) + θR(p||q)
]

where p is a prior from the set of priors C, as we defined for the MEU model, q is a reference

probability measure, R represents the relative entropy of two probabilities measure and θ the

degree of ambiguity aversion, and W is defined as above.
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Li (2020) uses a model where the reduction axiom is relaxed, and concludes that if decision-

makers have the multiplier preferences, then they are indifferent between one-shot and gradually

resolved lotteries. This result uses the proof by Strzalecki (2011) about multiplier preferences

satisfying Savage’s Sure-Thing Principle.

Early vs. late resolution of uncertainty under ambiguity

Strzalecki (2013) using a recursive dynamic model over the timing of resolution of uncer-

taintiy shows that the only model out of the main models studied in the literature (maxmin,

second-order expected utility, smooth model, multiplier model and its generalisation the varia-

tional model), only MEU is compatible with indifference to the timing of resolution of uncer-

tainty.

In the next section we analyse the data obtained from the experiment and link the results

to the theoretical predictions discussed in this section.

4 Results

In this section we discuss the main results of the experiment. We first focus on comparing

one-shot and gradually resolved lotteries across treatments (both between and within subjects).

We then analyse preferences between early and late resolution of uncertainty. Lastly, we discuss

how strong the preferences expressed in the previous two subsections are.

4.1 One-shot vs. gradual resolution of uncertainty

We first analyse the prevalence of preferences between one-shot or gradual resolution of

uncertainty in our sample across (between-subject and within subject) treatments. When com-

paring decisions we exclude observations that do not satisfy the monotonicity axiom18, but there

are no significant qualitative or quantitative differences if we include them. Figure 2 compares

the percentages of participants that show a preference for one-shot (either early or late) for

positively skewed lotteries19 20.
18These represent at most 11% of the sample.
19In the ambiguity treatment, skewness can differ depending on the beliefs of participants, but for illustrative

purposes we use this term for the corresponding lottery of the positively skewed lottery in the risk treatment,
and similarly for the negatively skewed lotteries.

20Corresponding graphs for negatively skewed lotteries are in the Appendix.
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By looking at the figure we can see there is a significant difference in behaviour between

treatments. In the risk treatment the percentage of participants that prefer early resolution

over gradual resolution remains relatively constant as the ex-ante probability of winning grows,

whereas in the ambiguity treatment there is a upward trend, such that approximately only a

third of participants choose to resolve the lottery early when the likelihood of winning is low

(10%) and 80% choose it when the likelihood of winning is high (90%). Table 3 shows the

p-values of McNemar tests on matched choices between early and late resolution of uncertainty

for each participant and each pairwise combination of probabilities or likelihoods for risk and

ambiguity21. They confirm the results from figure 2. The shift from early to gradual resolution

of uncertainty as probability increases is not significant under risk, but it is significant under

ambiguity.

(a) (b)

Figure 2: Percentages of Preferences of Early/Late Resolution over Gradual Resolution

Note: Figure (a) shows the percentage of participants that prefer early resolution of un-
certainty over gradual resolution. Figure (b) shows the the percentage of participants that
prefer early resolution of uncertainty over gradual resolution. In both cases we consider the
positively skewed lotteries. “l.v.” stands for low variance and “h.v.” means high variance.

We also use Page’s nonparametric test for ordered alternatives (Abdellaoui et al. (2015)) to

test for the existence of a trend in the preference for gradual resolution of uncertainty. The trend

is highly significant for ambiguity, both when comparing early and gradual resolution (p-values

0.0001 and 0.0035, for positively and negatively skewed lotteries, respectively) and late and
21Corresponding tables for negatively skewed and pairwise comparisons with late resolution of uncertainty can

be found in the Appendix.
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gradual resolution (p-values 0.0077 and 0.0009, for positively and negatively skewed lotteries,

respectively)22. No such trend exists, however, under risk23.

10% 50% 90% 50%
likelihood likelihood (l.v.) likelihood likelihood (h.v.)

Risk treatment - Positively skewed lotteries
10% likelihood - 1.000 0.8388 0.3173

50% likelihood (l.v.) - - 0.5930 1.000
90% likelihood - - - 0.3323

Ambiguity treatment - Positively skewed lotteries
10% likelihood - 0.0146** 0.0000*** 0.049**

50% likelihood (l.v.) - - 0.0192** 0.5485
90% likelihood - - - 0.0029***
Note: Each cell shows the p-values of McNemar test for matched choices between early

and gradual resolution of uncertainty under risk for different probabilities. *10%
significance level, **5% significance level, ***1% significance level.

Table 3: Test of Significant Shifts Between Early and Gradual Resolution of Uncertainty

From figure 2 we can also notice that there are some differences regarding the choice of early

vs. gradual resolution and late vs. gradual resolution of uncertainty. Under ambiguity, the

only significant difference is when comparing the pairwise choices that contain 90% likelihood

positively skewed lotteries (p-value of McNemar test 0.0047). This, however, does not extend

to the choices that contain the negatively skewed lotteries (p-value 0.1967). More importantly,

under risk, there is a significant shift of choices from early resolution over gradual resolution

to late resolution against gradual resolution for the 50% probability high-variance lottery, for

the positively and negatively skewed lotteries (p-values 0.0184 and 0.0325, respectively). In

both treatments, there is a significant minority (25% and 21% of the sample, respectively) that

shifts from choosing one-shot early lottery to the gradually resolved lottery when faced with the

alternative of late resolution. This means that when there is a very large change in probability

provided by the additional information, in situations in which participants have to wait, they are

willing to receive extra information. However, most participants do not change their preference

and can be consistently identified as averse to gradual resolution, or instead gradual resolution

loving.
22We do not include the 50% high variance probability treatment in the test as it is not directly comparable

to the other treatments, due to differences in the informativeness of the additional information.
23P-values for choice between early or gradual resolution of uncertainty are 0.3832 and 0.1493, for positively

and negatively skewed lotteries. P-values for choice between late or gradual resolution of uncertainty are 0.4379
and 0.3832.
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Result 1: There is a significant differences in attitudes towards the gradual resolution of

uncertainty between risk and ambiguity. Under ambiguity, the dominance of this type of resolu-

tion is inversely related to the likelihood of winning the lottery. No such trend can be observed

under risk.

4.2 Early vs. late resolution of uncertainty

We now study preferences between early and late resolution of uncertainty for both treat-

ments. Figure 3 shows the percentage of participants that prefer early resolution of uncertainty

to late resolution for the two between-subject treatments and the 4 different within-subject

treatments. We can see that, contrary to the previous analysis, there is no significant difference

between treatments. A large majority of participants (approximately between 70% and 85%, de-

pending on treatment) prefer early resolution of uncertainty over late resolution. Slightly fewer

participants have a preference for early resolution of uncertainty under ambiguity. However, this

difference is not significant for any within-subject treatment 24.

Figure 3: Percentage of Participants that Prefer Early Resolution of Uncertainty over Late Resolution

Note: “l.v.” stands for low variance and “h.v.” means high variance.

Result 2: Across all between and within treatments, a large majority of participants prefer

to learn the outcome of the lottery early rather than late.
24P-values of Fisher exact test: 0.599 (10% probability/likelihood), 0.502 (50% probability/likelihood, low

variance), 0.813 (50% probability/likelihood, high variance), 0.316 (90% probability/likelihood).

23



4.3 Strict preferences

As we mentioned in the Introduction and section 2 indifference between early, late or gradual

resolution of uncertainty is compatible with expected utility theory. In order to study if there

are deviations from the model we, therefore, also have to take into account if there are strict

preference for early or late resolution of uncertainty.

Figure 4 shows the percentage of participants that show a strict preference when asked to

choose between early or late resolution of uncertainty (Figure (a)), early or gradual resolution

of uncertainty (Figure (b)), and late or gradual resolution of uncertainty (Figure(c)). The main

takeaway is that there is a big difference in strict preferences between choices that involve the

pure time dimension (those in Figure (a)), and those that also involve gradual resolution of

uncertainty (Figures (b) and (c)). Between 11% and 27% of participants have a strict preference

between early and late resolution of uncertainty. However, between 32% and 61% have a strict

preference between early and gradual resolution of uncertainty, and 40% and 57% between late

and gradual resolution of uncertainty (see Appendix for details). The shift from weak to strict

preferences is significant at 1% for all pairwise comparisons in the ambiguity treatment, and

5% for all comparisons in the risk treatment, except for one, which is significant at 1% (see

Appendix).

(a) (b) (c)

Figure 4: Percentage of Participants with Strict Preferences Across Treatments

Note: Figure (a) shows the percentage of participants that have a strict preference
between early and late resolution of uncertainty. Figure (b) shows the the percentage of

participants that have a strict preference between early and gradual resolution of
uncertainty. Figure (c) shows the the percentage of participants that have a strict
preference between late and gradual resolution of uncertainty. In comparisons that
include gradually resolved lotteries we consider the positively skewed lotteries. “l.v.”

stands for low variance and “h.v.” means high variance.

It can also be noted that in choices that include gradually resolved lotteries the percentage

of participants that have strict preferences is overall lower in the risk treatment than in the
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ambiguity treatment, although in most cases the difference is not statistically significant, or

only marginally significant at 10% (see Appendix).

Result 3: Approximately half of the sample show a strict preference for or against gradual

resolution of uncertainty for all within-subject treatments. Preferences over early or late resolu-

tion of uncertainty are much weaker and no more than 20% of the sample has a strict preference

over them.

5 Discussion

The results above show that there are significant deviations from the (subjective) expected

utility and its predictions about preferences over the timing of uncertainty, both under risk and

ambiguity.

Firstly, at least a third of participants in the experiment have a strict preference over solving

uncertainty gradually in both treatments25. This is in line with the results from other studies like

Nielsen (2020), which find around 40% of participants having a strict preference over the number

of periods over which the lottery is resolved. Results also show that there seems to be a difference

(albeit only marginally significant) that the strength of preferences is stronger under ambiguity

than under risk. We can therefore conclude that a large proportion of the sample (generally more

than half in the ambiguity treatment) show preferences consistent with aversion to information

that shifts the ex-ante probability or likelihood or a liking for it. There is a significant difference

between treatments, however, in terms of the distribution of these preferences. Under risk, this

distribution remains quite constant across within-subject treatments, that is, as the probability

of winning the lottery goes up there is no significant change in the preferences, and neither is

there between more informative and less informative lotteries. This result is in opposition to the

main result by Abdellaoui et al. (2015), which finds an upward trend in the preference for simple

lotteries as the probability of winning the lottery increases. There are two important differences

between our design and theirs, however, that could have influenced the outcome: firstly, they

do not take the time aspect into account, that is, compound lotteries are compared to simple

lotteries, but they are all solved at the same time. Their elicitation method is also different as

they rely on a multiple-price list to estimate a certainty equivalent of lotteries, whereas we have
25Notice that because of the strict preference elicitation method this can be considered only a lower bound on

strict preferences
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turned to the three decision method developed by Epstein and Halevy (2019).

Secondly, preferences over when lotteries are resolved play a much smaller role in the decision-

making process than the number of periods in which the lottery is resolved (no more than 20%

of the sample shows a strict preference over early or late resolution of uncertainty). It is possible

that the 30 minute interval between both periods is not perceived by subjects to be long enough

to generate strict preferences. Additionally, to be the best of our knowledge, this is the first

experiment performed on-line that looks into preferences over the timing of information. This

may have affected preferences, as the environment and exposure to the outcome of the lottery

can significantly affect these preferences (Falk and Zimmermann, 2016). When looking at the

distribution of weak preferences, we see that a large majority of participants prefer to learn

the outcome of the lottery early rather than late. This result is very different to the result

obtained by Nielsen (2020), which states that very few participants choose early resolution of

uncertainty. However, there is a big difference in the experimental design, as their design allows

for all possible combinations of early gradual or late resolution of uncertainty, and therefore,

does not directly compare early and late resolution of uncertainty.

In the ambiguity treatment, we observe a trend across likelihoods of winning. This could be

explained in terms commonly used in the ambiguity literature as optimism or pessimism towards

the composition of the urn. For low likelihoods of winning, participants are more optimistic

about the content of the urn and, therefore, are more willing to learn the event before the final

outcome as this increases their chances of winning in both events. As the likelihood of winning

becomes larger, however, they become more pessimistic and learning about the event before

the final outcome lowers the probability of winning. This argument is close to the intuition

first used by Ellsberg (2011) about how ambiguity aversion changes across different likelihood

choices. This result has been empirically observed in the past, and is also consistent with the

results we obtain from the control task where we test ambiguity aversion for different likelihoods

events, as can be seen in figure 5. However, these two phenomena seem to be uncorrelated. A

Fisher exact test of the correlation between ambiguity aversion and preferences for either early

or gradual or late or gradual shows there is no significant correlation in any of the 16 pairwise

tests. One caveat is worthing mentioning. Ambiguity aversion is tested using an urn with 10

balls, whereas for the other lotteries we assume an urn with 200 balls. Some theoretical papers

(Einhorn and Hogarth, 1985; Rode et al., 1999) explain ambiguity aversion in such a way that it
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(a) (b)

Figure 5: Preferences over Gradual Resolution of Uncertainty and Ambiguity Aversion

Note: Figure (a) shows percentage of participants in the ambiguity with a preference
for early resolution of uncertainty over gradual resolution. Figure (b) shows percentage
of participants in the ambiguity treatment with behaviour compatible with ambiguity
aversion

could be interpreted that more complex ambiguity problems may affect ambiguity preferences.

In an experimental setting, however, Pulford and Colman (2008) show that this does not seem

to alter these preferences. Therefore, these two similar trends seem to be orthogonal to each

other.

Theoretical implications

As we discussed in section 3, different models have different prescriptions for preferences

over the timing of resolution of uncertainty. With respect to risky choices, we find that the

sample is quite evenly split between participants that prefer one-shot resolution of uncertainty

and those that prefer gradual resolution of uncertainty. We can state, however, that a non-

negligible percentage of participants have a behaviour that is not consistent with standard

economic models. We found no significant correlations between these choices and measures

like the big-five personality traits and positive and negative affect, that could provide some

psychological underpinnings to the observed behaviour, and link it loss aversion, disappointment

aversion or having a preference for suspense or suprise, as proposed by the main papers that

provide theoretical explanations for these preferences.

We now turn to study evidence for or against the ambiguity models discussed in section 3.

Results from this section show that under MEU participants should always choose one-shot

lotteries over gradually resolved lotteries, and have a strict preference over them. However, we
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find that only 3 (out of 61) participants show a behaviour compatible with this result. The

Choquet model establishes the same result for situations in which participants are ambiguity

averse, and that they should have a strict preference for gradual resolution of uncertainty when

they are ambiguity-seeking. Only 5 participants satisfy this condition. Finally, the multiplier

model establishes that participants should be indifferent between one-shot and gradual resolution

of uncertainty. 4 participants satisfy this condition. These three models can, thus, barely account

for 20% of the observed choices.

The main reason behind the poor behaviour of these models is that neither the multiplier or

MEU model can account for the changing preferences as the likelihood of winning changes. The

Choquet model is more flexible as it allows for ambiguity averse and ambiguity seeking attitudes

(although the capacity is supposed to be constant for all likelihood levels). But even allowing for

changes in the capacity, the Choquet model cannot capture the changes preferences either, as

these are not correlated with ambiguity attitudes. A more realistic model would have to capture

the two dimensions (changing ambiguity aversion, changing gradual resolution aversion) at the

same time.

6 Conclusion

This chapter has focused on studying differences in preferences over the timing of the reso-

lution of uncertainty in situations in which probabilities are known, and those in which they are

not known. We find significant deviations from the standard economic model in both cases.

The results can have significant implications in our understanding of these preferences. We

find that when the additional information is available about the outcome of the lottery a majority

of participants choose to learn it if the ex-ante likelihood of the good outcome is low, but they

want to avoid it if the ex-ante likelihood of the good outcome is high. This could, for instance,

explain why the take-up of genetic tests is generally low, as the ex-ante probability of having

the mutations related to developing these diseases is generally low.

These results could also help to develop information campaigns around individual behaviour

related to health or public goods like environmental protection. As we discussed in the Intro-

duction, most information provision has two components (instrumental and non-instrumental).

Noticing that under certain circumstances this information may be chosen to be avoided, and as
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result its instrumental value be neglected, can help design more efficient information mechanisms

or better evaluate its welfare-improving value.

There are also gaps in our understanding of the results that would be interesting to look into

in future projects. For instance, we still need to understand what makes some subjects more

averse to gradual resolution of uncertainty than others, and how to link their behaviour to the

alternative explanations provided by the literature. On the theory side, it would be interesting

to develop a model that can explain the changes in ambiguity aversion as the likelihood of the

good outcome changes, but also how preferences over gradual resolution of uncertainty change

as this likelihood varies.
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Appendix to Chapter 1

A.1 Proofs

Proof of proposition 1

From the main text we know that V (fπ∅) = min
p∈C

∑
w∈W

p(w), and that the minimum proba-

bility, without further information, of obtaining one of the winning numbers is
1

200
. Therefore,

V (fπ∅) =
|W |
200

where W ⊂ B is the set of winning numbers in lottery f, and |W | is the cardinality of W .

We can define the utility after E1 is realised in a similar fashion to fπ∅ .

V (fπE1
) =

|WE1 |
100 + th

where WE1 ⊂ E1 is the set of winning numbers in lottery f after E1 has occurred, |WE1 | is

its cardinality and th is the threshold value in lottery f. The expression above states that lowest

probability of winning the lottery after E1 has occurred is when the numerator is minimised

(there is only one ball per winning number in the urn) and the denominator is maximised (all

100 balls with unknown value have value equal or lower than the threshold).

It is easy to see that:

V (fπ∅) =
|W |
200
≥ |WE1 |

100 + th
= V (fπE1

)⇐⇒ |WE1 |
|W |

≥ 1

2
+

th

200

and that this holds for all |WE1 |, |W | and th in compound lotteries described in table 1, with

strict inequality for all cases but one (lottery 9) where the both sides of the inequality are equal

to each other.

Similarly to the case of E1, we can see that the utility of lottery f after E2 is realised is:

V (fπE2
) =

|WE2 |
200− th

Therefore,

V (fπ∅) =
|W |
200

>
|WE2 |

200− th
= V (fπE2

)⇐⇒ |WE2 |
|W |

> 1− th

200

and this also holds for all |WE2 |, |W | and th in compound lotteries described in table 1.
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A.2 Order of lotteries

The following table shows the four different orders of lotteries used to control for order effects.

The numbers used represent number of choice problems as shown in table 2.

Order # List of choices in order shown

1 [1, 20, 6, 15, 2, 19, 7, 14, 3, 18, 8, 13, 4, 17, 9, 12, 5, 16, 10, 11]

2 [16, 5, 11, 10, 17, 4, 12, 9, 18, 3, 13, 8, 19, 2, 14, 7, 20, 1, 15, 6]

3 [11, 20, 1, 10, 12, 19, 2, 9, 13, 18, 3, 8, 14, 17, 4, 7, 15, 16, 5, 6]

4 [6, 5, 16, 15, 7, 4, 17, 14, 8, 3, 18, 13, 9, 2, 19, 12, 10, 1, 20, 11]
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A.3 Experimental instructions

The Experiment

This experiment consists of 3 parts. Each part consists of a set of instructions detailing what

is expected of you during that part of the experiment. In the first two parts, this will include a

quiz to test your understanding of the questions. You will not be paid according to the answers

of the quiz and the exact questions that appear in the quiz will never be asked as part of the

choice problems of the experiment. After the instructions and the quiz, you will have to consider

some choice problems where you will be paid according to your choices. You will be reminded

when the instructions and the quiz have concluded and the choice problems are about to begin.

This same sequence of instructions, quiz, and choice problems will occur for the first 2 parts of

the experiment.

You will be able to revise the instructions at each page by clicking on buttons at the bottom

of the page.

Part 1 - Instructions: Lotteries

(Risk treatment)

In this part of the experiment you will be asked to make choices between different lotteries.

A lottery is a game of chance where the prize depends on the number on a ball drawn from

an urn.

-Types of lotteries

During the experiment you will see two different types of lotteries: 1.) one-stage lotteries

and 2.) two-stage lotteries.

1.) One-stage lottery

A one-stage lottery is a lottery that is resolved after drawing one ball from an urn that

contains 100 balls.

Below you can see what a one-stage lottery looks like:

Lotteries are composed of two elements, the urn and the winning numbers:

The urn: The urn with 100 balls in total is generated by the computer. Each of the

balls have a known number from 1 to 100. None of those balls can have the same

number.
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The winning numbers: To determine whether you win the lottery or not, one ball

will be drawn from the urn. If the number on the ball coincides with one of the

winning numbers, then you win the prize of the lottery, otherwise you win nothing.

The winning numbers are given and may vary between lotteries.

The winning numbers also determine the chances of winning the prize of the lottery. In

the example above there are four winning numbers. This means the chance of winning

the prize is 4 divided by 100, which is 4%. These calculations will be provided to you

with every lottery before you have to make your choice.

2.) Two-stage lottery

A two-stage lottery is a lottery that is resolved after two draws.

Below you can see what a two-stage lottery looks like:

Similarly to the one-stage lottery case, lotteries are composed of two elements, the (three)

urns and the winning numbers:

The urns: The first urn for this lottery on top of the figure is created in exactly

the same way as the one-stage lottery before. It is generated by the computer and

contains 100 balls.

The content of the two urns on the bottom of the figure depends on a value that is

pre-determined for each two-stage lottery. This value is called the threshold value. In

the example above, the threshold value is 30. This value may be different for each

two-stage lottery.
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The leftmost urn contains all balls from the urn on top that have numbers smaller or

equal to the threshold value. So, in the example above, all balls with a value equal or

smaller than 30 are included in the leftmost urn. All remaining balls are included in

the rightmost urn.

The winning numbers: As before, a set of winning numbers determines whether

you win the lottery or not. Remember that in this type of lottery two balls are drawn.

The first ball is drawn from the top urn. The number on this ball determines from

which of the other two urns the second ball is drawn. If the number on the first ball is

below the threshold value, the leftmost urn is used to draw the second ball. Otherwise,

the rightmost urn is used to draw the second ball.

The chance that the second ball is drawn from either of the urns therefore depends on

the threshold value. In the example above, the chance that the second ball is drawn

from the leftmost urn is 30%, as there are 100 balls in total and 30 are equal or lower

than 30. The chance that the second ball is drawn from the rightmost urn is 70%,
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as out of the 100 balls 70 are larger than 30, so the chance is 70 divided by 100, i.e.,

70%.

The second ball determines the prize. If the number on the second ball coincides with

one of the winning numbers, you win the prize. Otherwise, you win nothing. This is

the same principle as in the one-stage lottery.

In contrast to the one-stage lottery, you learn some intermediate information about

the chance of winning the prize after the first ball is drawn in two-stage lotteries. In

the example above, the chance of winning the prize is 4% before the first ball is drawn.

This is the same as in the one-stage lottery.

After the first ball is drawn this chance changes depending on the threshold value:

– If a ball lower or equal to 30 is drawn from the first urn, the chance of winning

the prize is 2 over 30, i.e., 6.6%, as out of the 30 balls 2 are winning numbers.

– Similarly, if a ball with a number greater than 30 is drawn from the first urn, the

chance of winning the prize is 2 over 70, i.e., 2.9%, because from the 70 balls in

the urn, 2 are winning numbers.

You will be told about the chance of winning the prize before any ball and after the first ball is

drawn at the time of making your choice.

(Ambiguity treatment)

In this part of the experiment you will be asked to make choices between different lotteries.

A lottery is a game of chance where the prize depends on the number on a ball drawn from

an urn.

-Types of lotteries

During the experiment you will see two different types of lotteries: 1.) one-stage lotteries

and 2.) two-stage lotteries.

1.) One-stage lottery

A one-stage lottery is a lottery that is resolved after drawing one ball from an urn that

contains 200 balls.

Below you can see what a one-stage lottery looks like:

41



Lotteries are composed of two elements, the urn and the winning numbers:

The urn: The urn with 200 balls in total is generated by the computer. Half of the

balls have a known number from 1 to 100. None of those balls can have the same

number.

The other half of the balls have an unknown number. These are represented above

with a ‘?’ symbol. Each of these 100 balls can have any number between 1 and 100.

This means that the same number can be on more than one of those balls. It could

also mean that the same number is on all 100 balls or that a number is on none of

the balls. The numbers on these balls will be randomly determined by the computer

before the first choice problem is shown to you. Neither you nor the experimenter will

know the numbers written on these balls until the end of the experiment today. Due

to this procedure it is also impossible for the experimenter to guess what the numbers

on the balls may be from previous sessions of this experiment.

The winning numbers: To determine whether you win the lottery or not, one ball

will be drawn from the urn. If the number on the ball coincides with one of the

winning numbers, then you win the prize of the lottery, otherwise you win nothing.

The winning numbers are given and may vary between lotteries.

The winning numbers also determine the chances of winning the prize. In the example

above there are four winning numbers. Among the 100 balls whose number we can

observe four are winning. This means the chance of winning the prize is at least 4

42



divided by 200 which is 2%. If none of the balls whose numbers we cannot observe

have any of the winning numbers, the chance of winning the prize is still 2%. If all

of the balls whose number we cannot observe shows any of the winning numbers the

chance of winning the prize is 104 divided by 200 which is 52%. So, the chance of

winning the prize depends on the number of balls with the ‘’?’ that have the winning

numbers. This number can be anywhere between 0 and 100 which means the chance

to win the prize will lie between 2% and 52%. These calculations will be provided to

you with every lottery before you have to make your choice.

2.) Two-stage lottery

A two-stage lottery is a lottery that is resolved after two draws.

Below you can see what a two-stage lottery looks like:

(Note: In the actual experiment, the figure below was animated, and the 100 balls with un-

known number moved back and forth between the two lower urns. We used this so that participants

would have a graphical representation of the uncertainty about the content of these two urns. The

animated version of the figure can be found at https://elfeexpjulenstatic.s3.amazonaws.

com/example_compound_blue_amb.gif.)
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Similarly to the one-stage lottery case, lotteries are composed of two elements, the (three)

urns and the winning numbers:

The urns: The first urn for this lottery on top of the figure is created in exactly

the same way as the one-stage lottery before. It is generated by the computer and

contains 200 balls. Again, neither you nor the experimenter will be able to observe the

numbers written on the 100 balls with the ‘?’ symbol until the end of the experiment.

The content of the two urns on the bottom of the figure depends on a value that is

pre-determined for each two-stage lottery. This value is called the threshold value. In

the example above, the threshold value is 30. This value may be different for each

two-stage lottery.

The leftmost urn contains all balls from the urn on top that have numbers smaller or

equal to the threshold value. So, in the example above, all balls with a value equal or

smaller than 30 are included in the leftmost urn. This includes the 30 balls that we

know have a number smaller or equal to this threshold value and also all balls with the

‘?’ sign that have such a number. All remaining balls are included in the rightmost

urn. Those are balls with values we know are larger than 30 and also those with the

sign ‘?’ that have a value larger than 30.

The winning numbers: As before, a set of winning numbers determines the prize

of the lottery. Remember that in this type of lottery two balls are drawn. The first

ball is drawn from the top urn. The number on this ball determines from which of

the other two urns the second ball is drawn. If the number on the first ball is below

the threshold value, the leftmost urn is used to draw the second ball. Otherwise, the

rightmost urn is used to draw the second ball.

The chance that the second ball is drawn from either of the urns therefore depends

on the threshold value. If none of the balls with a ‘?’ symbol in the first urn in the

example have a number smaller than or equal to 30, the chance that the second ball is

drawn from the leftmost urn is 30 divided 100, i.e., 15%. If all of the balls with a ‘?’

symbol have a number smaller than or equal to 30 the chance is 130 divided by 200,

i.e., 65%. Since any number of balls with a ‘?’ symbol can have a number smaller

than or equal to 30, the chance that the second ball is drawn from the leftmost urn is
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therefore between 15% and 65%. Similarly, the chance that the second ball is drawn

from the rightmost urn is between 35% and 85%.

The second ball determines the prize. If the number on the second ball coincides with

one of the winning numbers, you win the prize. Otherwise, you win nothing. This is

the same principle as in the one-stage lottery.

In contrast to the one-stage lottery, you learn some intermediate information about

the chance of winning the prize after the first ball is drawn in two-stage lotteries. In

the example above, the chance of winning the prize lies between 2% and 52% before

the first ball is drawn. This is the same as in the one-stage lottery.

After the first ball is drawn this chance changes depending on the threshold value:

– If a ball lower or equal to 30 is drawn from the first urn, the lowest chance of

winning the prize is now 1.5%. This is the case when all the balls with the ‘?’

symbol in the first urn are smaller than or equal to 30 but none of them have

the numbers 1 or 2 on them. The chance of winning the prize is then 2 divided

by 130 which is 1.5%. The highest chance of winning is 78.5% which is the case

if all balls with a ‘?’ symbol from the first urn are smaller than or equal to 30

and show either a 1 or a 2 as 102 divided by 130 is 78.5%. The overall chance

of winning is therefore between 1.5% and 78.5% if the first ball shows a number

smaller than or equal to 30.

– Similarly, if a ball with a number greater than 30 is drawn from the first urn, the

chance of winning the prize lies between 1.1% (if all balls with the ‘?’ symbol

are greater than 30, but different from 99 and 100) and 60% (if all balls with the

‘?’ symbol are greater than 30 and have numbers 99 or 100).

You will be told about the highest and lowest chance of winning the prize before any ball

and after the first ball is drawn at the time of making your choice.

Part 1- Instructions: Choice tasks

In the first part of the experiment, you will have to complete 20 choice tasks. Here is an

example of how each task will look:
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(Risk Treatment)

In each of them, we will show you two lotteries.

You will have to decide which one of the two lotteries you prefer. The two lotteries may

differ in three aspects:

1.) Whether they are one-stage or two-stage lotteries

If the lottery is a one-stage lottery, you will learn whether you won the prize or nothing

after one ball is drawn. If the lottery is a two-stage lottery, you will learn whether

you won the lottery only after the second ball is drawn. However, as we mentioned

above, you will learn some extra information about the chance of winning the prize
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(Ambiguity Treatment)

after the first ball is drawn in two-stage lotteries.

2.) The time when a lottery is resolved

A lottery is resolved when the ball that determines the prize is drawn. One-stage

lotteries may be resolved at Time 1 or Time 2. This means that you will learn

whether you won the prize earlier (if the lottery is resolved at Time 1) or later (if

the lottery is resolved at Time 2). Two-stage lotteries are always resolved at Time 2,

as the first ball is drawn in Time 1 and the second one is drawn at Time 2. Time 1

happens right after you have made all your choices. Time 2 happens 30 minutes after

you have made all your choices. You can see when the lotteries are resolved under the

name of each lottery.

For instance, if you choose a lottery that is resolved at Time 1 you will learn whether
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you won the prize or not right after you have made all your choices and the lottery

that will be played for payment is determined (more on this later). If, instead, you

choose a lottery that is resolved at Time 2 you will only learn whether you won the

prize 30 minutes after that.

3.) The prize of the lottery

In each task you will have to choose three times between the two different lotteries.

We will call each of these three choices a choice problem to distinguish them from the

20 choice tasks.

In each of the choice problems the prizes will be different:

• In the first choice problem, the prize is £15 in both lotteries, i.e., you will earn £15

if the ball that determines the prize is equal to one of the winning balls. Otherwise,

you will earn £0.

• In the second choice problem, the prize is £15.5 in the first lottery and £15 in the

second lottery.

• In the third choice problem, the prize is £15 in the first and £15.5 in the second

lottery.

Within each choice task the two lotteries will coincide in two aspects:

1.) The chance of winning the prize before any ball is drawn.

Both lotteries will have the same chance of winning the prize before any ball is drawn.

You will be informed about the chance of winning the prize in every choice task. In

two-stage lotteries, you will also learn what the chance of winning the prize are after

the first ball has been drawn depending on whether the first ball drawn has a number

below or above the threshold value.

2.) The set of winning numbers.

The winning numbers which would give you the prize are the same in both lotteries.

Please be aware that there are no right or wrong answers to any of the choice problems.

We are trying to learn about your preferences so you should always choose what you personally

prefer.

Also keep in mind that your choices will be relevant for your payment today. Therefore, your

choices should only be guided by your own preferences.
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Part 1 Earnings

One of the 20 choice tasks will be randomly selected by the computer, and one of the 3 choice

problems from that choice task will also be selected by the computer. All of these tasks and

problems will be equally likely to be chosen by the computer. The lottery you have chosen from

the choice problem picked by the computer will be played for payment, and depending on the

outcome of this lottery you will either win or lose the prize and this will be added to your final

payment.

Part 1- Instruction: Timing of experiment

(Risk treatment)

1.) Quiz

After you have finished reading these instructions you will have to take a short quiz on the

content of these instructions. The aim of the quiz is to make sure you have correctly understood

the instructions.

2.) Choice tasks

Once you have correctly completed all the questions in the quiz you will be asked to make

the choices in the 20 choice tasks we have discussed before.

As only one choice task and one choice problem will be played for payment, and all are

equally likely to be chosen, you should consider each of them in isolation when making the

decision. That is, you should consider each of the choice problems as if they were the ones that

are going to be played.

3.) Drawing of lotteries to be played for payment

After you have made all decisions in the choice tasks, the computer will randomly draw the

choice task and choice problem that will be played for payment. The lottery you choose in that

specific choice problem will be played for real and determines the prize that will be added to

your payment. So, for instance, if numbers 4 and 3 are drawn, the lottery you chose in the

fourth choice task in the third choice problem, is the one that will be played for real.

4.) Drawing of ball in Time 1
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After learning about the lottery that will be played for payment, one ball will be drawn

by the computer. If the chosen lottery is a one-stage lottery resolved at Time 1 you will learn

whether you won the lottery immediately. If it is a two-stage lottery you will learn whether the

number on that ball is larger or smaller than the threshold, and whether the urn from which

the second ball that determines the payment is drawn is the leftmost or the rightmost urn. In

this case, the exact number of the first ball will be revealed at the end of the experiment to you

and the experimenter, at the same time as the number of the second ball.

If the lottery that will be played is a one-stage lottery to be resolved at Time 2 you will

simply see this lottery again.

5.) Part 2 Task

In the second part of the experiment you will perform a different task. We will give you the

details of this task after the drawing of the ball in Time 1. This task will be completely unrelated

to the decisions or outcome of the choice task. However,while you are performing the task,

and until the drawing of the second ball at Time 2 you will be informed of the prize

you won after Time 1, if the lottery played was a one-stage lottery resolved at Time

1. You will also be reminded about the lottery that will be played in Time 2 if the

lottery chosen to be played for real is a one-stage lottery to be resolved at Time 2,

or a two-stage lottery. This information will be shown in a box in the lower right corner of

the screen for the duration of the second task.

This task will have to be performed even if the lottery chosen has been completely resolved

at Time 1.

6.) Drawing of ball in Time 2

Exactly 30 minutes after the drawing of the ball in Time 1, the computer will draw a ball

from the lottery that was chosen to be played. This ball will be drawn from the single urn if

the lottery chosen to be played is a one-stage lottery resolved at Time 2, or from the urn that

was selected in Time 1 if the two-stage lottery is played. If the lottery was already resolved at

Time 1, you will be reminded of the prize you won.

7.) Final part of the experiment

After the Time 2 drawing of the ball, you will be asked to make some more choices. These

choices will be unrelated to the choice task. After you have completed these tasks, you will have

to fill in a short survey, and the experiment will conclude.
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(Ambiguity treatment)

1.) Quiz After you have finished reading these instructions you will have to take a short

quiz on the content of these instructions. The aim of the quiz is to make sure you have correctly

understood the instructions.

2.) Generating urn Right before we show you the first choice task, the content of the

urn will be randomly generated by the computer, following the process we discussed before.

Remember that the whole content of the urn will not be shown to you or the experimenter until

the end of the experiment.

3.) Choice tasks Once you have correctly completed all the questions in the quiz , and

the urns have been generated, you will be asked to make the choices in the 20 choice tasks we

have discussed before.

As only one choice task and one choice problem will be played for payment, and all are

equally likely to be chosen, you should consider each of them in isolation when making the

decision. That is, you should consider each of the choice problems as if they were the ones that

are going to be played.

4.) Drawing of lotteries to be played for payment After you have made all decisions

in the choice tasks, the computer will randomly draw the choice task and choice problem that

will be played for payment. The lottery you choose in that specific choice problem will be played

for real and determines the prize that will be added to your payment. So, for instance, if numbers

4 and 3 are drawn, the lottery you chose in the fourth choice task in the third choice problem,

is the one that will be played for real.

5.) Drawing of ball in Time 1 After learning about the lottery that will be played for

payment, one ball will be drawn by the computer. If the chosen lottery is a one-stage lottery

resolved at Time 1 you will learn whether you won the lottery immediately. If it is a two-stage

lottery you will learn whether the number on that ball is larger or smaller than the threshold,

and whether the urn from which the second ball that determines the payment is drawn is the

leftmost or the rightmost urn. In this case, the exact number of the first ball will be revealed at

the end of the experiment to you and the experimenter, at the same time as the number of the

second ball.
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If the lottery that will be played is a one-stage lottery to be resolved at Time 2 you will

simply see this lottery again.

6.) Part 2 Task In the second part of the experiment you will perform a different task. We

will give you the details of this task after the drawing of the ball in Time 1. This task will be

completely unrelated to the decisions or outcome of the choice task. However, while you are

performing the task, and until the drawing of the second ball at Time 2 you will be

informed of the prize you won after Time 1, if the lottery played was a one-stage

lottery resolved at Time 1. You will also be reminded about the lottery that will

be played in Time 2 if the lottery chosen to be played for real is a one-stage lottery

to be resolved at Time 2, or a two-stage lottery. This information will be shown in a box

in the lower right corner of the screen for the duration of the second task.

This task will have to be performed even if the lottery chosen has been completely resolved

at Time 1.

7.) Drawing of ball in Time 2

Exactly 30 minutes after the drawing of the ball in Time 1, the computer will draw a ball

from the lottery that was chosen to be played. This ball will be drawn from the single urn if

the lottery chosen to be played is a one-stage lottery resolved at Time 2, or from the urn that

was selected in Time 1 if the two-stage lottery is played. If the lottery was already resolved at

Time 1, you will be reminded of the prize you won.

8.) Final part of the experiment

After the Time 2 drawing of the ball, you will be asked to make some more choices. These

choices will be unrelated to the choice task. After you have completed these tasks, you will have

to fill in a short survey, and the experiment will conclude.
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Figure A.1: Example of Slider Task in Ambiguity Treatment

Note: The lottery to be played at time 2 is also shown.

Figure A.2: Example of Slider Task in Risk Treatment

Note: The lottery to be displayed at time 2 is also shown.
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Figure A.3: Example of Lottery Choices in Risk Treatment

Figure A.4: Example of Lottery Choices in Risk Treatment
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A.4 Additional empirical tests

(a) (b)

Figure A.5: Percentages of preferences of early/late resolution over gradual resolution (negatively skewed
lotteries)

Note: Figure (a) shows the percentage of participants that prefer early resolution of uncertainty over gradual
resolution for negatively skewed lotteries. Figure (b) shows the the percentage of participants that prefer early
resolution of uncertainty over gradual resolution. In both cases we consider the positively skewed lotteries. “l.v.”
stands for low variance and ‘h.v.” means high variance.
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10% 50% 90% 50% l
likelihood likelihood (l.v.) likelihood likelihood (h.v.)

Risk treatment - Negatively skewed lotteries
10% 50% 90% 50%

likelihood likelihood (l.v.) likelihood likelihood (h.v.)
10% likelihood - 0.8273 0.6831 0.3173

50% likelihood (l.v.) - - 0.5930 0.8084
90% likelihood - - - 0.2253

Ambiguity treatment - Negatively skewed lotteries
10% likelihood - 0.0001*** 0.0010*** 0.0076***

50% likelihood (l.v.) - - 0.8185 0.1083
90% likelihood - - - 0.1797
Note: Each cell shows the p-values of McNemar test for matched choices between early

and gradual resolution of uncertainty for different probabilities/likelihoods. *10%
significance level, **5% significance level, ***1% significance level.

Table A.1: Test of shifts between early and gradual resolution of uncertainty II

10% 50% 90% 50%
likelihood likelihood (l.v.) likelihood likelihood (h.v.)

Risk treatment - Positively skewed lotteries
10% likelihood - 0.6171 1 0.1025

50% likelihood (l.v.) - - 0.3711 0.2971
90% likelihood - - - 0.1083

Ambiguity treatment - Positively skewed lotteries
10% likelihood - 0.0046*** 0.0077*** 0.0896*

50% likelihood (l.v.) - - 0.3458 0.1967
90% likelihood - - - 0.0389**
Note: Each cell shows the p-values of McNemar test for matched choices between late
and gradual resolution of uncertainty under risk for different probabilities/likelihoods.

*10% significance level, **5% significance level, ***1% significance level.

Table A.2: Test of shifts between early and gradual resolution of uncertainty III

56



10% 50% 90% 50%
likelihood likelihood (l.v.) likelihood likelihood (h.v.)

Risk treatment - Negatively skewed lotteries
10% likelihood - 1 0.6547 0.8273

50% likelihood (l.v.) - - 0.7963 0.8084
90% likelihood - - - 1

Ambiguity treatment - Negatively skewed lotteries
10% likelihood - 0.0028*** 0.0001*** 0.0082***

50% likelihood (l.v.) - - 1 0.0455**
90% likelihood - - - 0.1573
Note: Each cell shows the p-values of McNemar test for matched choices between late

and gradual resolution of uncertainty under ambiguity for different likelihoods
(negatively skewed lotteries). *10% significance level, **5% significance level, ***1%

significance level.

Table A.3: Test of shifts between early and gradual resolution of uncertainty IV

Early vs. late choices problems
Early vs. late (10%) 0.27

Early vs. late (50% l.v.) 0.17
Early vs. late (90%) 0.14

Early vs. late (50% h.v.) 0.21
Positively skewed gradually resolved lotteries

Early vs. gradual (10%) 0.51 Late vs. gradual (10%) 0.40
Early vs. gradual (50% l.v.) 0.32 Late vs. gradual (50% l.v.) 0.35
Early vs. gradual (90%) 0.38 Late vs. gradual (90%) 0.41

Early vs. gradual (50% h.v.) 0.36 Late vs. gradual (50% h.v.) 0.44
Negatively skewed gradually resolved lotteries

Early vs. gradual (10%) 0.44 Late vs. gradual (10%) 0.47
Early vs. gradual (50% l.v.) 0.34 Late vs. gradual (50% l.v.) 0.36
Early vs. gradual (90%) 0.47 Late vs. gradual (90%) 0.43

Early vs. gradual (50% h.v.) 0.5 Late vs. gradual (50% h.v.) 0.49

Table A.4: Percentage of participants with strict preferences by probability in the risk treatment

57



Early vs. late choices problems
Early vs. late (10%) 0.13

Early vs. late (50% l.v.) 0.11
Early vs. late (90%) 0.19

Early vs. late (50% h.v.) 0.16
Positively skewed gradually resolved lotteries

Early vs. gradual (10%) 0.60 Late vs. gradual (10%) 0.55
Early vs. gradual (50% l.v.) 0.46 Late vs. gradual (50% l.v.) 0.51
Early vs. gradual (90%) 0.61 Late vs. gradual (90%) 0.57

Early vs. gradual (50% h.v.) 0.52 Late vs. gradual (50% h.v.) 0.52
Negatively skewed gradually resolved lotteries

Early vs. gradual (10%) 0.63 Late vs. gradual (10%) 0.51
Early vs. gradual (50% l.v.) 0.51 Late vs. gradual (50% l.v.) 0.47
Early vs. gradual (90%) 0.65 Late vs. gradual (90%) 0.56

Early vs. gradual (50% h.v.) 0.57 Late vs. gradual (50% h.v.) 0.55

Table A.5: Percentage of participants with strict preferences by probability in the ambiguity treatment.

(1) (2) (3) (4)

Prob/likelihood p-value positive p-value negative p-value positive p-value negative
skew/early vs. gradual skew/early vs. gradual skew/late vs. gradual skew/late vs. gradual

Risk treatment
10% 0.0029*** 0.0330** 0.0290** 0.0719*

50% (l.v.) 0.0389** 0.0253** 0.0116** 0.0593*
90% 0.0047*** 0.0001*** 0.0016*** 0.0006***

50% (h.v.) 0.0201** 0.0002*** 0.0186** 0.0011**
Ambiguity treatment

10% 0.0000*** 0.0000*** 0.0000*** 0.0000***
50% (l.v.) 0.0001*** 0.0000*** 0.0000*** 0.0001***

90% 0.0000*** 0.0000*** 0.0003*** 0.0011***
50% (h.v.) 0.0001*** 0.0002*** 0.0001*** 0.0003***

Note: Each column (1)-(4) shows p-value of McNemar test of shift in strict preferences from early vs. late
choices to early/late vs gradual lotteries, for positively and negatively skewed lotteries and same ex-ante

probability/likelihood. *10% significance level, **5% significance level, ***1% significance level.

Table A.6: Test of changes in strict preferences between early/late and early-late/gradual choices

(1) (2) (3) (4) (5)

Prob/likelihood Early vs. late Early vs. gradual Early vs. gradual Late vs. gradual Late vs. gradual
(positive) (negative) (positive) (negative)

10% 0.060* 0.340 0.058* 0.099* 0.708
50% (l.v.) 0.421 0.125 0.082* 0.117 0.324

90% 0.616 0.024** 0.061* 0.123 0.256
50% (h.v.) 0. 0.630 0.124 0.566 0.450 0.703

Note: Each column (1)-(4) shows the exact p-value of the Fisher test of difference in percentage across
treatments of participants that have a strict preference over each lottery comparison. *10% significance level,

**5% significance level, ***1% significance level.

Table A.7: Test of differences in strict preferences between risk and ambiguity treatment
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